Τεχνητή Νοημοσύνη – Νέα & Εργαλεία | Greek AI Network

Greek AI Network

  • Αρχική
  • Νέα
  • Εργαλεία AI
    • Για Βίντεο
    • Για Εικόνα
    • Για Εκπαιδευτικούς
    • Για Εξειδικευμένες Εφαρμογές
    • Για Ήχο
    • Για Κείμενο
  • Εφαρμογές AI
  • Βασικές έννοιες
  • Εκπαιδευτικά Προγράμματα
    • Δωρεάν σεμινάρια AI
    • Κατάρτηση AI
No Result
View All Result
Τεχνητή Νοημοσύνη – Νέα & Εργαλεία | Greek AI Network
  • Αρχική
  • Νέα
  • Εργαλεία AI
    • Για Βίντεο
    • Για Εικόνα
    • Για Εκπαιδευτικούς
    • Για Εξειδικευμένες Εφαρμογές
    • Για Ήχο
    • Για Κείμενο
  • Εφαρμογές AI
  • Βασικές έννοιες
  • Εκπαιδευτικά Προγράμματα
    • Δωρεάν σεμινάρια AI
    • Κατάρτηση AI
No Result
View All Result
Τεχνητή Νοημοσύνη – Νέα & Εργαλεία | Greek AI Network

Greek AI Network

No Result
View All Result
Home Νέα

Η άνοδος της Context Engineering και του Model Context Protocol (MCP)

by Kyriakos Koutsourelis
15 Νοεμβρίου, 2025
in Νέα
0
Η άνοδος της Context Engineering και του Model Context Protocol (MCP)
Share on FacebookShare on Twitter

Από την πρόχειρη προτροπή (prompting) στη συστηματική ενσωμάτωση υψηλής αξιοπιστίας σε AI workflows


Καθώς οι υποδομές αναζητούν τρόπους να αξιοποιηθούν πιο αποδοτικά και οι προγραμματιστές εξακολουθούν να παλεύουν για την αποτελεσματική ενσωμάτωση της τεχνητής νοημοσύνης (AI) στις ροές εργασίας τους, αναδύεται ένα νέο παράδειγμα: η μετάβαση από το ad-hoc prompting σε μια πιο δομημένη προσέγγιση που ονομάζεται μηχανική πλαισίου (context engineering).
Η μηχανική πλαισίου αφορά στην προσεκτική προετοιμασία και παροχή δομημένων πληροφοριών προς το μοντέλο AI ώστε να εκτελεί ένα έργο με αξιοπιστία. Αυτή η προσέγγιση υπερβαίνει τη διατύπωση μιας μεμονωμένης προτροπής, και περιλαμβάνει σειρά τεχνικών και σχεδιασμένων βημάτων που στοχεύουν στη βελτίωση της αξιοπιστίας και της ακρίβειας του μοντέλου. Σε πρακτικό επίπεδο, η μηχανική πλαισίου επιδιώκει να μετριάσει την μη-ντετερμινιστική συμπεριφορά των μεγάλων γλωσσικών μοντέλων (LLMs) παρέχοντάς τους τις πιο ουσιώδεις πληροφορίες για να είναι πιο ακριβή.


Τι είναι η μηχανική πλαισίου (context engineering)

Ο όρος «μηχανική πλαισίου» περιγράφει τη διαδικασία σχεδιασμού και βελτιστοποίησης των οδηγιών-πλαισίων και των πληροφοριών που τροφοδοτούνται σε μια μονάδα AI, έτσι ώστε να εκτελεί σωστά το έργο της.
Σύμφωνα με το blog της Anthropic:

«Η ομάδα μας διαπιστώνει ότι η συνηθισμένη αποτυχία προέρχεται από υπερμπλοκαρισμένα σύνολα εργαλείων που καλύπτουν πάρα πολλές λειτουργίες ή οδηγούν σε ασαφή σημεία αποφάσεων για το ποιο εργαλείο θα χρησιμοποιηθεί».
Κάποιες κρίσιμες συνιστώσες της μηχανικής πλαισίου:

  • Δομημένες οδηγίες (system prompts) – καθορίζουν το ρόλο, τις υποχρεώσεις και τα πλαίσια συμπεριφοράς του μοντέλου.
  • Επιλεγμένα παραδείγματα (few-shot) που αντιπροσωπεύουν πρότυπα συμπεριφοράς.
  • Ανάκτηση και εισαγωγή σχετικών γνώσεων, δεδομένων, εργαλείων.
  • Διαχείριση μνήμης / ιστορικού διαλόγου / συμφραζόμενων.
  • Συμπίεση και επιλογή του πιο σχετικού πλαισίου, λόγω ορίων token και επεξεργασίας.

Με άλλα λόγια: η μηχανική πλαισίου δεν είναι απλώς «γράψε μια καλή προτροπή», αλλά «οργάνωσε ολόκληρο το περιβάλλον των πληροφοριών που δίνεις στο μοντέλο», ώστε αυτό να μπορεί να λειτουργεί με συνέπεια, αξιόπιστα και σε κλίμακα.


Ο ρόλος του Model Context Protocol (MCP)

Το MCP αποτελεί μια πρότυπη πρωτοβουλία που έρχεται – ως αντιστάθμισμα στο πρόβλημα της κατακερματισμένης ενσωμάτωσης εργαλείων για AI. Σύμφωνα με την IBM, το MCP «λειτουργεί ως επίπεδο τυποποίησης για εφαρμογές AI ώστε να επικοινωνούν αποτελεσματικά με εξωτερικές υπηρεσίες όπως εργαλεία, βάσεις δεδομένων και προκαθορισμένα templates».
Βασικά στοιχεία του MCP:

  • Πρότυπο ανοικτού κώδικα που εισήγαγε η Anthropic στο τέλος του 2024.
  • Περιγράφει έναν client-server αρχιτεκτονικό τύπο: ο «πελάτης» (π.χ. AI agent) στέλνει αίτηση σε έναν MCP «διακομιστή» (server) για να ανακτήσει ή εκτελέσει κάτι.
  • Σκοπός: να υποστηρίξει την διαλειτουργικότητα μεταξύ AI μοντέλων και πολλών διαφορετικών εργαλείων/δεδομένων, σε vendor-agnostic τρόπο.
  • Η αναλογία που χρησιμοποιεί η IBM: «Όπως η θύρα USB-C για hardware», έτσι και το MCP για AI εργαλεία.

Γιατί έχει σημασία

  • Με το MCP, οι προγραμματιστές δεν χρειάζεται να φτιάχνουν ξεχωριστές custom ενσωματώσεις (connectors) για κάθε δεδομένο εργαλείο ή υπηρεσία — «M × N» πρόβλημα μειώνεται.
  • Επιτρέπει σε agents να έχουν πρόσβαση σε πραγματικό χρόνο σε εργαλεία, δεδομένα και υπηρεσίες, και όχι μόνο να βασίζονται στο training-cutoff του μοντέλου.
  • Ενισχύει τις ροές εργασίας (“workflows”) με AI agents που μπορούν να ενεργήσουν, εκτελώντας ενέργειες, συνδυάζοντας πληροφορίες και εργαλεία.

Προκλήσεις και ζητήματα

  • Παρά την υιοθέτηση, το MCP δεν είναι χωρίς κίνδυνους: ερευνητές εντόπισαν κενά ασφαλείας, περιπτώσεις «tool poisoning» και άλλες ευπάθειες σε MCP servers.
  • Έχει επισημανθεί ότι το πρωτόκολλο δεν ενσωματώνει από μόνο του πλήρεις μηχανισμούς ταυτότητας/εξουσιοδότησης, γεγονός που μπορεί να οδηγήσει σε θέματα «fragmented identity» και ευπάθειας.

Η μετάβαση προς agentic ροές εργασίας

Η εξέλιξη από στατικές προτροπές προς ροές εργασίας με agents (AI agents) αποτελεί μία από τις πιο σημαντικές τάσεις του 2025. Οι οργανισμοί έχουν συνειδητοποιήσει ότι τα απλά LLMs – ως «μαύρα κουτιά» — έχουν περιορισμούς: δεν βλέπουν πέραν του συνόρου εκπαίδευσης τους, δεν μπορούν να ενεργήσουν σε πραγματικό χρόνο και δεν ενσωματώνουν εύκολα εξωτερικά εργαλεία.
Οι AI agents — όπως αυτοί που βασίζονται σε πρωτόκολλα όπως το MCP, A2A (Agent-to-Agent) ή AG-UI — μπορούν να:

  • ενσωματώσουν δεδομένα σε πραγματικό χρόνο,
  • εκτελέσουν ενέργειες βάσει εργαλείων και δεδομένων,
  • συνεργαστούν μεταξύ τους (multi-agent)
    Αυτό σηματοδοτεί την προώθηση της «agentic εργασίας» έναντι των παραδοσιακών chatbot.

Στις πρακτικές τους εφαρμογές, αυτές οι ροές εργασίας περιλαμβάνουν:

  • Οριοθέτηση αρχείων όπως AGENTS.md που περιγράφουν το πλαίσιο λειτουργίας των agents.
  • Συνδέσμους coding agent → αναφορά εφαρμογής + spec-driven ανάπτυξη.
  • Ομαδικά εργαλεία (shared instructions) που αποθηκεύουν best practices ώστε κάθε developer σε ομάδα να εκκινεί με τον ίδιο «κανόνα» στο AI εργαλείο του.

Πώς εφαρμόζονται αυτές οι τεχνικές σε πραγματικά workflows

1. Ομαδική χρήση συστατικών instructions και εργαλείων

Οι σύγχρονοι editors κώδικα και περιβάλλοντα ανάπτυξης (IDEs) προσφέρουν επιλογές ώστε οι ομάδες να μοιράζονται «µια-κλικ» εντολές για το AI: π.χ., κάθε code review περνά από checklist, κάθε developer μπορεί με εντολή να τραβήξει την ενημερωμένη βιβλιογραφία της βιβλιοθήκης.
Αυτό επιτυγχάνει:

  • Ομοιομορφία στην AI χρήση – όλοι χρησιμοποιούν το ίδιο πλαίσιο.
  • Εξοικονόμηση χρόνου και «ασυνέπειας» μεταξύ μελών ομάδας.
  • Δυνατότητα ενσωμάτωσης context: docs, examples, memory, εργαλεία.

2. Μηχανική πλαισίου για agent workflows

Σε ένα παράδειγμα, ένας agent μπορεί να:

  • αξιοποιεί το MCP για να αντλήσει δεδομένα από corporate wiki, database ή SaaS API,
  • αναλύει τα δεδομένα αυτά με το LLM,
  • εκτελεί μια ενέργεια (π.χ., ενημέρωση ιστοσελίδας, δημιουργία pull request) και
  • καταγράφει τι έκανε, με βάση το ίδιο context.
    Η μηχανική πλαισίου εδώ σημαίνει ότι η ομάδα έχει καθορίσει: ποια context εισάγουμε, πώς το συμπιέζουμε, ποια εργαλεία διατίθενται στο agent, ποιες είναι οι guardrails.

3. Διαχείριση ποσοτήτων context & κόστος token

Καθώς το περιβάλλον context μεγαλώνει, μεγαλώνει και η χρήση tokens, το latency και το κόστος. Εδώ απαιτείται επιλογή, συμπίεση, προτεραιοποίηση. Η συμπίεση ιστορικού διαλόγων, η μείωση της επανάληψης, η επιλογή των πιο σχετικών δεδομένων — όλα είναι βασικά στοιχεία της μηχανικής πλαισίου.


Συμπέρασμα

Η μετάβαση από την «τυχαία» ή ad-hoc χρήση prompts στην πιο δομημένη και επαγγελματική προσέγγιση της μηχανικής πλαισίου είναι πλέον αναγκαία καθώς οι περιπτώσεις χρήσης της AI γίνονται πιο σύνθετες. Το MCP εμφανίζεται ως καθοριστικό στοιχείο για τη διαλειτουργικότητα, ενώ οι agentic ροές εργασίας φέρουν την υπόσχεση για πιο «ενεργή» και επιχειρησιακή χρήση της AI. Ωστόσο, η επιτυχία εξαρτάται από την εφαρμογή των σωστών πρακτικών: επιλογή και διαχείριση context, δομημένα workflows, ασφάλεια και διακυβέρνηση.


Πηγές

  • What is Model Context Protocol (MCP)? – IBM. (IBM)
  • What is Context Engineering – LlamaIndex blog. (llamaindex.ai)
  • Context Engineering: A Guide With Examples. (DataCamp)
  • Effective Context Engineering for AI Agents. (Anthropic)
  • MCP Safety Audit: LLMs with MCP Allow Major Security Exploits. (arXiv)

Tags: AI News

ΣΧΕΤΙΚΑ ΑΡΘΡΑ

AWS Fastnet υποθαλάσσιο καλώδιο υψηλής χωρητικότητας
Εφαρμογές AI

AWS Fastnet υποθαλάσσιο καλώδιο υψηλής χωρητικότητας

by Kyriakos Koutsourelis
20 Νοεμβρίου, 2025
Η Anthropic αποκαλύπτει την πρώτη κυβερνοκατασκοπεία από AI.
Νέα

Anthropic: Το AI που διέπραξε κυβερνοεπίθεση χωρίς ανθρώπους

by Theodoros Kostogiannis
20 Νοεμβρίου, 2025
5 Καινοτομίες της Amazon που Ενισχύουν την Εμπειρία των Οδηγών Παράδοσης
Νέα

5 Καινοτομίες της Amazon που Ενισχύουν την Εμπειρία των Οδηγών Παράδοσης

by Kyriakos Koutsourelis
20 Νοεμβρίου, 2025
Η Intuit υπέγραψε πολυετή συμφωνία άνω των $100 εκατ. με την OpenAI για να ενσωματώσει εφαρμογές όπως TurboTax, QuickBooks, Credit Karma και Mailchimp στο ChatGPT. Οι χρήστες θα μπορούν να ολοκληρώνουν οικονομικές εργασίες, να λαμβάνουν εξατομικευμένες απαντήσεις και να αξιοποιούν τα δεδομένα τους με ασφάλεια, εντός της πλατφόρμας.
Νέα

Συνεργασία Intuit–OpenAI: Οι εφαρμογές της στο ChatGPT

by Theodoros Kostogiannis
19 Νοεμβρίου, 2025
μελέτη από ερευνητές του Πανεπιστημίου Cornell αποκαλύπτει ότι η εγκυκλοπαίδεια Grokipedia, που υποστηρίζεται από τεχνητή νοημοσύνη και δημιουργήθηκε από τον Elon Musk, αποτελεί σε μεγάλο βαθμό αντιγραφή της Wikipedia και περιλαμβάνει αναφορές σε αναξιόπιστες πηγές
Νέα

Η Τεχνητή Νοημοσύνη Απειλεί τη Wikipedia

by Theodoros Kostogiannis
19 Νοεμβρίου, 2025
AWS και OpenAI ανακοινώνουν πολυετή στρατηγική συνεργασία
Νέα

AWS και OpenAI ανακοινώνουν πολυετή στρατηγική συνεργασία

by Kyriakos Koutsourelis
19 Νοεμβρίου, 2025
Το Gemini 3 θα λανσαριστεί επίσης στη μηχανή αναζήτησης της Google από την πρώτη μέρα. Θα έχεις την επιλογή να ενεργοποιήσεις το Gemini 3 Pro σε “AI Mode”, όπου η Google λέει ότι θα παρέχει πιο χρήσιμες πληροφορίες για ένα ερώτημα.
Νέα

Νέο Gemini 3: Το ισχυρότερο AI της Google ως τώρα

by Theodoros Kostogiannis
18 Νοεμβρίου, 2025
Microsoft 365 Copilot: Επεκτείνεται η επεξεργασία δεδομένων εντός της χώρας για 15 χώρες
Νέα

Microsoft 365 Copilot: Επεκτείνεται η επεξεργασία δεδομένων εντός της χώρας για 15 χώρες

by Kyriakos Koutsourelis
18 Νοεμβρίου, 2025
Το DeepMind της Google προβλέπει τους κυκλώνες με ακρίβεια
Εφαρμογές AI

Το DeepMind της Google προβλέπει τους κυκλώνες με ακρίβεια

by Theodoros Kostogiannis
18 Νοεμβρίου, 2025
Next Post
Η Google λανσάρει το Private AI Compute (PAIC), έναν άμεσο ανταγωνιστή του Private Cloud Compute της Apple, προσφέροντας προηγμένες λειτουργίες τεχνητής νοημοσύνης μέσω των μοντέλων Gemini, διατηρώντας παράλληλα τα προσωπικά δεδομένα των χρηστών ιδιωτικά.

Private AI Compute: Το “μαύρο κουτί” για την ιδιωτική AI

Τα AI workloads απαιτούν αλλαγή στην ορχήστρωση υποδομής

Τα AI workloads απαιτούν αλλαγή στην ορχήστρωση υποδομής

Η Microsoft ηγέτης στο IDC MarketScape για λύσεις ERP με AI

Η Microsoft ηγέτης στο IDC MarketScape για λύσεις ERP με AI

Πρόσφατα Άρθρα

Οι χρήστες επαινούν εφαρμογές όπως η Wellness AI και η Wysa για την παροχή υποστήριξης 24/7, με καθοδηγούμενες συνομιλίες και ασκήσεις ενσυνειδητότητας. Κύρια χαρακτηριστικά περιλαμβάνουν συνομιλίες με AI για έκφραση σκέψεων, εξατομικευμένους διαλογισμούς, παρακολούθηση διάθεσης και εκμάθηση δεξιοτήτων όπως το CBT και DBT.

Wellness AI

20 Νοεμβρίου, 2025
AWS Fastnet υποθαλάσσιο καλώδιο υψηλής χωρητικότητας

AWS Fastnet υποθαλάσσιο καλώδιο υψηλής χωρητικότητας

20 Νοεμβρίου, 2025
Η Anthropic αποκαλύπτει την πρώτη κυβερνοκατασκοπεία από AI.

Anthropic: Το AI που διέπραξε κυβερνοεπίθεση χωρίς ανθρώπους

20 Νοεμβρίου, 2025

Ετικέτες

Adobe AI News AI Tools AI Ρομποτική AI στην καθημερινότητα Alexa Alibaba Amazon Anthropic Apple AWS Azure AI Chatbot ChatGPT Claude Copilot Deepmind DeepSeek Gemini GenAI Google Grok HP IBM Intel Leonardo AI Linkedin Llama Meta Microsoft Mistral Nvidia OpenAI Oracle Perplexity Salesforce Samsung xAI Εκπαίδευση Επιχειρήσεις Ευρωπαϊκή Ένωση Ηνωμένες Πολιτείες Μέσα Κοινωνικής Δικτύωσης Μεγάλη Βρετανία Υγεία

Μενού

  • Αρχική
  • Νέα
  • Εργαλεία AI
    • Για Βίντεο
    • Για Εικόνα
    • Για Εκπαιδευτικούς
    • Για Εξειδικευμένες Εφαρμογές
    • Για Ήχο
    • Για Κείμενο
  • Εφαρμογές AI
  • Βασικές έννοιες
  • Εκπαιδευτικά Προγράμματα
    • Δωρεάν σεμινάρια AI
    • Κατάρτηση AI
  • Σχετικά με εμάς
  • Βασικές έννοιες
  • Όροι Χρήσης
  • Ιδιωτικότητα

© 2024 Gain - Greek AI Network, all rights reserved.

No Result
View All Result
  • Αρχική
  • Νέα
  • Εργαλεία AI
    • Για Βίντεο
    • Για Εικόνα
    • Για Εκπαιδευτικούς
    • Για Εξειδικευμένες Εφαρμογές
    • Για Ήχο
    • Για Κείμενο
  • Εφαρμογές AI
  • Βασικές έννοιες
  • Εκπαιδευτικά Προγράμματα
    • Δωρεάν σεμινάρια AI
    • Κατάρτηση AI

© 2024 Gain - Greek AI Network, all rights reserved.